Adrian Chlanda1, Michal J. Wozniak1,2, and Krzysztof J. Kurzydlowski1

1. Faculty of Materials Science and Engineering – Warsaw University of Technology, Warsaw, Poland

2. University Research Centre – Functional Materials, Warsaw University of Technology, Warsaw, Poland


An increasing interest in porous scaffold substitutes for bone replacement has arisen in recent years. This kind of material does not need to be removed with additional surgery after bone repair. One of the most widely used degradable materials is polycaprolactone (PCL). PCL can be fabricated into porous scaffold, which play an important role in bone repair by supplying space for bone cell growth and differentiation both in vitro and in vivo. The ideal bone substitute material should possess osteoconduction, mechanical properties similar to those at the bone and cartilage repair sites. Weak mechanical properties of porous polymer scaffold limit the applications. To improve the mechanical properties for bone repair and provide a better environment for cell attachment and proliferation, bioceramics is usually considered as fillers or coatings. In this research, PCL and hydroxyapatatite (HAp) were mixed to compose a porous scaffold. HAp as a reinforced phase, can improve the mechanical properties and osteoconduction of composite. The aim of this study was to determine the changes in mechanical properties of scaffold in the nanoscale during in vitro degradation. For this purpose novel atomic force microscopy technique – Peak Force Quantitative NanoMechanics was implemented.

You need to be a member of The International NanoScience Community - Nanopaprika.eu to add comments!

Join The International NanoScience Community - Nanopaprika.eu