S. Zobl[1],

I.C. Gebeshuber[2], W. Marx[3], T. Schwerte[4], M. Schreiner1




Structural colors are highly attractive for artists, biologists and physicists, and have a long history in art-based research. Various investigations have been performed regarding their composition and reproduction, whereas poems and paintings tried to incorporate their marvellous properties by describing and emulating them. The blue sky, the colors of rainbows, oil films on water, soap bubbles, peacock feathers and the wings of certain tropical butterflies are the most famous examples of structural coloration in nature.


The project “Structure.makes.colors” focus on transferring these fascinating colors and their unique properties through a sophisticated material technique into the art. In one go the progressive Label Bionic-Art starts up with a permanent collaboration in-between artists and scientists to extend their possibilities of expression as well as broadening a better understanding of nature.


The unique property of structural colors is that they are not pigmented. These colors arise through the refraction of visible light (390 – 790 nm) caused by Nanostructures due to five physical phenomena. The organic macrostructure (e.g. cover scales of a butterfly) is as much fascinating for artworks, because of their regular assemblages, and is included in the art-based science approach. The minuscule nanostructures generate iridescence through interference of light.


The main aim of the project is the “brain gain” from science to art generating new techniques and the enforcement of Bionic-Art events for the general public and topic related persons (scientists, artists). Structural colors in nature appear similar to the visual presentation of the glamour history (Gundle, 2006). Since the 50ies shiny, strong reflecting materials with changing effects dependent on the angle of view show a spectacular presence standing for a dream world of an imaginary lifestyle in society. Glamour goes hand in hand with their physical properties, seeming not real, nor concrete, a seemingly bodiless color that only remains for a second, to suddenly disappear into another one of glimpse and glam, just like structural colors seem to be. The scientific treatment of structural colors shall produce a new generation of colors without producing additional chemical waste but durable and shiny effects that never fade.


Unique structure implementations combine art with biology, attract with their beauty, and cause never-ending interest to investigate and enjoy them. The project will result in sustainable synergy between art and science, by creating Bionic-Art. New expression techniques will create progressive multidimensional visual impressions and a permanent communication float between art and science through workshops, lectures, books and various progressive arts.



For more information contact: info.bionic.art@gmx.net

[1] Academy of fine Arts, Institute of Science and Technology in Art, Vienna, Austria

[2] Universiti Kebangsaan Malaysia, Institute For Microengineering and Nanoelectronics, Malaysia. University of 

   Technology, Inst. of Applied Physics, Vienna, Austria.

[3] Academy of Fine Arts, Institute for Fine Arts, Vienna, Austria.

[4] University of Innsbruck, Institute of Zoology, Innsbruck, Austria.


You need to be a member of The International NanoScience Community - Nanopaprika.eu to add comments!

Join The International NanoScience Community - Nanopaprika.eu

E-mail me when people leave their comments –