Researchers from North Carolina State University and the University of Texas have revealed more about graphene’s mechanical properties and demonstrated a technique to improve the stretchability of graphene – developments that should help engineers and designers come up with new technologies that make use of the material. Graphene is a promising material that is used in technologies such as transparent, flexible electrodes and nanocomposites. And while engineers think graphene holds promise for additional applications, they must first have a better understanding of its mechanical properties, including how it works with other materials. “This research tells us how strong the interface is between graphene and a stretchable substrate,” says Dr. Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and co-author of a paper on the work. “Industry can use that to design new flexible or stretchable electronics and nanocomposites. For example, it tells us how much we can deform the material before the interface between graphene and other materials fails. Our research has also demonstrated a useful approach for making graphene-based, stretchable devices by ‘buckling’ the graphene.” The researchers looked at how a graphene monolayer – a layer of graphene only one atom thick – interfaces

The post Understanding interface properties of graphene paves way for new applications has been published on Technology Org.

Votes: 0
E-mail me when people leave their comments –

You need to be a member of The International NanoScience Community - Nanopaprika.eu to add comments!

Join The International NanoScience Community - Nanopaprika.eu