Carbon nanotube logic device operates on subnanowatt power

Researchers have demonstrated a new carbon nanotube (CNT)-based logic device that consumes just 0.1 nanowatts (nW) in its static ON and OFF states, representing the lowest reported value by 3 orders of magnitude for CNT-based CMOS logic devices. The device could serve as a building block for large-area, ultralow-power CNT logic circuits that can be used to realize a variety of nanoelectronics applications. Illustrations of (a) the CNT CMOS inverter and (b) a cross-section of an individual CNT transistor, including a 25-nm-thick Ni gate that enables ultralow power consumption. (c) Atomic force microscopy image of the CNT film morphology in the transistor channel region. Credit: Geier, et al. ©2013 American Chemical Society   The researchers, Michael L. Geier, et al., at Northwestern University in Evanston, Illinois, and the University of Minnesota in Minneapolis, have published their paper on the subnanowatt CNT logic in a recent issue of Nano Letters. “A modern-day integrated circuit has more than 1 billion transistors,” coauthor Mark C. Hersam, Professor of Materials Science and Engineering, Chemistry, and Medicine at Northwestern University, told Phys.org. “Consequently, the power dissipation per transistor needs to be very low in order for the entire circuit to have a reasonablepower consumption. In fact, it is generally

The post Carbon nanotube logic device operates on subnanowatt power has been published on Technology Org.

Similar news or articles:

  1. Advancing graphene for post-silicon computer logic: Researchers pioneer new approach for graphene logic circuits
  2. Power to you: carbon nanotube muscles are going strong
  3. CNT wrap-gate transistors could extend transistor performance scaling
Votes: 0
E-mail me when people leave their comments –

You need to be a member of The International NanoScience Community - Nanopaprika.eu to add comments!

Join The International NanoScience Community - Nanopaprika.eu