ABSTRACT...

 

Manipulation of carrier spins in semiconductors for spintronics applications has received great attention driven by improved functionalities and higher speed operation. Doping of semiconductor nanocrystals by transition-metal ions pronounced as diluted magnetic semiconductors (DMS) has attracted tremendous attention. Such doping is, however, difficult to achieve in low-dimensional strongly quantum-confined nanostructures by conventional growth procedures. In the present case, magic-sized, pure, and Cr-doped CdS DM-QDs have been synthesized by solution phase chemistry (lyothermal method). Structural, optical, and magnetic investigation suggest an intrinsic nature of ferromagnetism with highly quantum-confined system. Optical and magnetic results of pure and doped QDs reveal major physical consequences of dopant localization within the capacity to engineer dopant-carrier exchange interactions introducing magnetic functionalities within the host semiconductor lattice. Unpaired Cr ions in Cd substitutional sites could create spin ordering and ferromagnetic coupling. The results presented herein illustrate some of the remarkable and unexpected complexities that can arise in doped QDs.


Journal of Nanoparticle Research, doi:10.1007/s11051-011-0488-7.
Votes: 0
E-mail me when people leave their comments –

You need to be a member of The International NanoScience Community - Nanopaprika.eu to add comments!

Join The International NanoScience Community - Nanopaprika.eu