Brookhaven Lab scientists use simple, ‘green’ process to create novel core-shell catalyst that tolerates carbon monoxide in fuel cells and opens new, inexpensive pathways for zero-emission vehicles   Brookhaven Lab scientists Radoslav Adzic, Vyacheslav Volkov, Lijun Wu (back), Wei An, Jia Wang, and Dong Su (front) gathered in the control room for a scanning transmission electron microscope (STEM) in the Center for Functional Nanomaterials. UPTON, NY—The quest to harness hydrogen as the clean-burning fuel of the future demands the perfect catalysts—nanoscale machines that enhance chemical reactions. Scientists must tweak atomic structures to achieve an optimum balance of reactivity, durability, and industrial-scale synthesis. In an emerging catalysis frontier, scientists also seek nanoparticles tolerant to carbon monoxide, a poisoning impurity in hydrogen derived from natural gas. This impure fuel—40 percent less expensive than the pure hydrogen produced from water—remains largely untapped. “Our highly scalable, ‘green’ synthesis method, as revealed by atomic-scale imaging techniques, opens new and exciting possibilities for catalysis and sustainability.” — Brookhaven Lab Chemist Jia Wang Now, scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory—in research published online September 18, 2013 in the journal Nature Communications—have created a high-performing nanocatalyst that meets all these demands. The novel core-shell

The post Nanocrystal Catalyst Transforms Impure Hydrogen into Electricity has been published on Technology Org.

Votes: 0
E-mail me when people leave their comments –

You need to be a member of The International NanoScience Community - Nanopaprika.eu to add comments!

Join The International NanoScience Community - Nanopaprika.eu