Imaging with Nanoscale Resolution at NSLS-II

What does it take to make a clear image at nanoscale resolution? The biggest challenge is keeping your camera and your object very, very still. To minimize any blur on such a small scale, you must control vibration in the imaging system, which can occur on the atomic level because of changes of temperature, pressure, or even slight movement that isn’t detectable outside the molecular level.   With the emergence of ultra-bright synchrotron light sources – including the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory – scientists are taking advantage of deep x-ray penetration and larger depth of focus for exploring the nanoworld.  However, they also face the challenge of manipulating nano-focused x-ray beams for nanoscale imaging, which requires longer data acquisition time than electron imaging. Computer-aided design (CAD) model of the multilayer Laue lenses (MLL) fluorescence microscope prototype, with inset of the MLL setup used to perform scanning fluorescence experiments. Background image is a fluorescence pattern obtained by raster scanning over a gold test pattern, taken over 6 hours. During data acquisition thermal drifts did not exceed 45 nanometers. The synchrotron measurements confirm high stability of the prototype instrument measured at the Nanopositioning Laboratory of the National Synchrotron

The post Imaging with Nanoscale Resolution at NSLS-II has been published on Technology Org.

Votes: 0
E-mail me when people leave their comments –

You need to be a member of The International NanoScience Community - Nanopaprika.eu to add comments!

Join The International NanoScience Community - Nanopaprika.eu