By folding a paper-based Li-ion battery in a Miura-ori pattern (similar to how some maps are folded), scientists have shown that the battery exhibits a 14x increase in areal energy density and capacity due to its smaller footprint. Paper-based batteries are already attractive due to their low cost, roll-to-roll fabrication methods, and flexibility. The advantages of folding them into smaller sizes adds to these features and could lead to high-performance batteries for various applications. Illustrations and photos of a Li-ion battery being folded in the Miura pattern, which increases the areal energy density and capacity by 14 times. Credit: Cheng, et al. ©2013 American Chemical Society The researchers, Qian Cheng, et al., from Arizona State University, have published a paper on folding paper-based Li-ion batteries in a recent issue of Nano Letters. “Foldable batteries may be useful for powering devices that have limited space on board,” coauthor Candace Chan, Assistant Professor of Materials Science and Engineering at Arizona State University, told Phys.org. “Furthermore, with the development of foldable paper-based electronics demonstrated by other research groups recently, a battery that also can be folded may become important for integration of the power source and other components into a single, entirely foldable device.” In

The post Folding batteries increases their areal energy density by up to 14 times has been published on Technology Org.

Votes: 0
E-mail me when people leave their comments –

You need to be a member of The International NanoScience Community - Nanopaprika.eu to add comments!

Join The International NanoScience Community - Nanopaprika.eu