Reprinted with permission. Environ. Sci. Technol., 2012, 46 (13), pp 6893–6899 |DOI: 10.1021/es300839e |
Pub Date (Web): 14 May 2012 | Copyright © 2012 American Chemical Society | Gregory V. Lowry, Kelvin B. Gregory, Simon C. Apte, and Jamie R. Lead



Increasing use of engineered nanomaterials with novel properties relative to their bulk counterparts has generated a need to define their behaviors and impacts in the environment. The high surface area to volume ratio of nanoparticles results in highly reactive and physiochemically dynamic materials in environmental media. Many transformations, e.g. reactions with biomacromolecules, redox reactions, aggregation, and dissolution, may occur in both environmental and biological systems. These transformations and others will alter the fate, transport, and toxicity of nanomaterials. The nature and extent of these transformations must be understood before significant progress can be made toward understanding the environmental risks posed by these materials.

Views: 78


You need to be a member of The International NanoScience Community to add comments!

Join The International NanoScience Community

Welcome - about us

Welcome! Nanopaprika was cooked up by Hungarian chemistry PhD student in 2007. The main idea was to create something more personal than the other nano networks already on the Internet. Community is open to everyone from post-doctorial researchers and professors to students everywhere.

There is only one important assumption: you have to be interested in nano!

Nanopaprika is always looking for new partners, if you have any idea, contact me at

Dr. András Paszternák, founder of Nanopaprika

Partner network:

Next partner events of TINC

We are Media Partner of:



© 2019   Created by András Paszternák, PhD (founder).   Powered by

Badges  |  Report an Issue  |  Terms of Service