Electronic properties probed by scanning tunneling spectroscopy: From isolated gold nanocrystal to well-defined supracrystals

Scanning tunneling microscopy and spectroscopy at 5 K have been used to determine the electronic properties of 7-nm dodecanethiol-passivated Au nanocrystals in three different configurations: isolated nanocrystal, self-organized thin films (few nanocrystal layers), and large three-dimensional well-defined thick films (over 30 nanocrystal layers) called supracrystals. The electronic properties of both thin and thick well-ordered supracrystals are analyzed in scanning tunneling spectroscopy geometry through dI/dV curves and conductance mapping at different bias voltages. The single particles exhibit a typical dI/dV curve with a Coulomb gap of ∼360 meV and a Coulomb staircase. The dI/dV curve of the thin supracrystals presents a Coulomb blockade feature ∼100 meV narrower in width than that of the single nanocrystal but without well-defined staircase. On the contrary, the thick supracrystals exhibit a dI/dV curve showing a large Coulomb gap with a Coulomb-staircase-like structure. Generally, the conductance mapping is found to be very homogeneous for both supracrystals. Nevertheless, for some bias voltages, inhomogeneities across individual nanocrystals appear. Additionally, some of these inhomogeneities seem to be related to the supracrystal surface morphology. Finally, these slight variations in the conductance mapping across individual nanocrystals embedded in the supracrystal are discussed in terms of high degree of nanocrystal ordering, low nanocrystal size distribution, and nanocrystal crystallinity.

Views: 35

Tags: and, electron, gold, microscopy, nanocrystal, scanning, spectroscopy, superlattice, supracrystal, transport, More…tunneling

Comment

You need to be a member of The International NanoScience Community to add comments!

Join The International NanoScience Community

Next partner events of TINC

We are Media Partner of:

Welcome - about us

Welcome! Nanopaprika was cooked up by Hungarian chemistry PhD student in 2007. The main idea was to create something more personal than the other nano networks already on the Internet. Community is open to everyone from post-doctorial researchers and professors to students everywhere.

There is only one important assumption: you have to be interested in nano!

Nanopaprika is always looking for new partners, if you have any idea, contact me at editor@nanopaprika.eu

Dr. András Paszternák, founder of Nanopaprika

Publications by A. Paszternák:

Pd/Ni Synergestic Activity for Hydrogen Oxidation Reaction in Alkaline Conditions

The potential use of cellophane test strips for the quick determination of food colours

pH and CO2 Sensing by Curcumin-Coloured Cellophane Test Strip

Polymeric Honeycombs Decorated by Nickel Nanoparticles

Directed Deposition of Nickel Nanoparticles Using Self-Assembled Organic Template,

Organometallic deposition of ultrasmooth nanoscale Ni film,

Zigzag-shaped nickel nanowires via organometallic template-free route

Surface analytical characterization of passive iron surface modified by alkyl-phosphonic acid layers

Atomic Force Microscopy Studies of Alkyl-Phosphonate SAMs on Mica

Amorphous iron formation due to low energy heavy ion implantation in evaporated 57Fe thin films

Surface modification of passive iron by alkylphosphonic acid layers

Formation and structure of alkylphosphonic acid layers on passive iron

Structure of the nonionic surfactant triethoxy monooctylether C8E3 adsorbed at the free water surface, as seen from surface tension measurements and Monte Carlo simulations