Mohammad Mansoob Khan's Posts (22)

Sort by

Electrochemically active biofilm assisted synthesis of Ag@CeO2 nanocomposites for antimicrobial activity, photocatalysis and photoelectrodes

Journal of Colloid and Interface Science 431 (2014) 255–263.

http://www.sciencedirect.com/science/article/pii/S0021979714004457

Abstract:

Ag@CeO2 nanocomposites were synthesized by a biogenic and green approach using electrochemically active biofilms (EABs) as a reducing tool. The as-synthesized Ag@CeO2 nanocomposites were characterized and used in antimicrobial, visible light photocatalytic and photoelectrode studies. The Ag@CeO2 nanocomposites showed effective and efficient bactericidal activities and survival test against Escherichia coli O157:H7, and Pseudomonas aeruginosa. The as-synthesized Ag@CeO2 nanocomposites also exhibited enhanced visible light photocatalytic degradation of 4-nitrophenol and methylene blue than pure CeO2. A photocatalytic investigation showed that the Ag@CeO2 nanocomposites possessed excellent visible light photocatalytic activities compared to pure CeO2. Electrochemical impedance spectroscopy and photocurrent measurements showed that the as-synthesized Ag@CeO2 nanocomposites exhibited excellent and enhanced responses to visible light irradiation. These results suggest that the AgNPs anchored at CeO2 induced visible light photoactivity by decreasing the recombination of photogenerated electrons and holes, and extending the response of pure CeO2 to visible light. Overall, as-synthesized Ag@CeO2 nanocomposites are smart materials that can be used for a range of applications, such as antimicrobial activity, visible light photocatalysis and photoelectrode.

Read more…

Visible light-active TiO2 (m-TiO2) nanoparticles were obtained by an electron beam treatment of commercial TiO2 (p-TiO2) nanoparticles. The m-TiO2 nanoparticles exhibited a distinct red-shift in the UV-visible absorption spectrum and a much narrower band gap (2.85 eV) due to defects as confirmed by diffuse reflectance spectroscopy (DRS), photoluminescence (PL), X-ray diffraction, Raman spectroscopy, electron paramagnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and linear scan voltammetry (LSV). The XPS revealed changes in the surface states, composition, Ti4+ to Ti3+ ratio, and oxygen deficiencies in the m-TiO2. The valence band XPS, DRS and PL results were carefully examined to understand the band gap reduction of m-TiO2. The visible light-responsive enhanced photocatalytic activity of m-TiO2 was demonstrated by degrading methylene blue and brilliant blue G. The EIS and LSV in the dark and under visible light irradiation further support the visible light-induced photocatalytic activities of the m-TiO2 due to a decrease in electron transfer resistance and an increase in photocurrent. This study confirms that m-TiO2 can be used effectively as a photocatalyst and photoelectrode material owing to its enhanced visible light-induced photocatalytic activity.

Read more…