SYNTHESIS AND CHARACTERIZATION OF HYDROXYAPATITE NANORODS FROM CUTTLEFISH BONES AND THEIR NANOCOMPOSITES FOR BIOMEDICAL APPLICATIONS

Satheesh Kumar B, Manisha Vidyavathy S

Anna University

Hydroxyapatite is widely utilized for different biomedical applications because of its outstanding biocompatibility and bioactivity. Cuttlefish bones, which are available aplenty, are both inexpensive and eco-friendly sources for calcium carbonate. In the present study, cuttlefish bones-derived HAp nanorods have been utilized to fabricate HAp nanocomposites incorporating 1, 3 and 5 wt.% each of GO, MWCNTs, GONRs and Ag NPs. Characterization using such techniques as XRD, FTIR, HRSEM and EDS was performed to analyze the physicochemical properties of nanocomposites, and MTT assay, hemolysis, SBF biomineralization and drug release to evaluate the biological properties. The XRD and HRSEM results reveal that crystallite and particle size increase with increasing wt.% of carbon nanomaterials and Ag NPs. However, the addition of nanomaterials did not modify the shape of HAp. The MTT assay and hemolysis results suggest GONRs possess better biocompatibility than GO and CNTs due to their smooth edge structure. While adding carbon materials up to 3 wt.% caused an increase in the hardness, adding up to 5 wt.% of them caused a decrease in the hardness due to the agglomeration of the particles. Biocompatibility and Vicker’s hardness studies show that adding carbon nanomaterials up to 3 wt.% caused significant improvement in biocompatibility and mechanical properties. Antibacterial activity test was performed to analyze the ability to preclude the formation of biofilms. The results showed better activity for silver-incorporated nanocomposites in the presence of E. coli and S. aureus bacteria. Drug release studies were performed using lidocaine drug and the results showed nearly similar drug release profile for all the samples except HAg3. Finally, nanocomposite HRA3 could be a suitable candidate for biomedical applications since it shows better biological and mechanical properties than GO and MWCNTs nanocomposites.

You need to be a member of The International NanoScience Community - Nanopaprika.eu to add comments!

Join The International NanoScience Community - Nanopaprika.eu

Votes: 0
Email me when people reply –