TTP - Journal of Nano Research #2

3439925532?profile=originalImproved Oil Recovery by High Magnetic Flux Density Subjected to Iron Oxide Nanofluids

 

Authors: Noorhana Yahya, Muhammad Kashif, Afza Shafie, Hasan Soleimani, Hasnah Mohd Zaid, Noor Rasyada Ahmad Latiff

 

Abstract: Oil recovery in offshore environments can be increased by using nanofluids with electromagnetic waves generated from an antenna in the oil reservoir. In the case of offshore environments, these constraints can be avoided if a horizontal antenna is towed close to the seabed, which maximises the electromagnetic energy transferred from the overburden to the reservoir and nanofluids in the reservoir. In this research, a new enhanced antenna is used with iron oxide (Fe2O3) and zinc oxide (ZnO) nanofluids for oil recovery applications at the laboratory scale. In the antenna study, it was observed that the curve antenna with magnetic feeders gave a 1978% increase in the magnetic field signal strength compared to the case without magnetic feeders. The curve antenna with magnetic feeders produced a 473% increase in the electric field signal strength compared to the case without magnetic feeders. Iron oxide (Fe2O3) nanoparticles were prepared by the sol-gel method. The iron oxide (Fe2O3) nanoparticle sizes were in the range of 30.27-37.60 nm. FESEM and HRTEM images show that the samples have good crystallinity and that the grain size increased as temperature increased. Iron oxide (Fe2O3) samples sintered at 500°C showed a high initial permeability and Q-factor and a low loss factor compared to samples sintered at 500°C. The sample had a very high initial permeability and a low loss at low frequencies; therefore, it was suitable for the preparation of the nanofluid and oil recovery applications. Oil recovery through the usage of 0.1 % (w/w) iron oxide (Fe2O3) nanofluid with an EM field generated from the curve antenna with magnetic feeders was 33.45% of OOIP (original oil in place). In a similar case where 0.1 % (w/w) zinc oxide (ZnO) nanofluid with an EM field was used, 22.46 % of OOIP was recovered. These results imply that injecting 0.1% w/w iron oxide nanofluid coupled to the curve antenna with magnetic feeders has potential for oil recovery for improved water flooding systems because the high magnetic flux density that acts on the nanoparticles is proportional to the magnetic field strength.

 

Direct link: http://www.scientific.net/JNanoR.26.89

 

14. The Band Structures of Single-Walled Carbon Nanotubes and ZnO Nanoparticles Used for Oil Recovery in Water Flooding System

 

Authors: Afza Shafie, Noorhana Yahya, Muhammad Kashif, Hasnah Mohd Zaid, Hasan Soleimani, Mohamad Sahban Alnarabiji

 

Abstract: A major challenge for the oil industry is increasing the oil recovery from reservoirs. Nanofluid injection with the aid of electromagnetic (EM) waves can improve oil recovery. Nanoparticles of zinc oxide (ZnO) were synthesised using a sol-gel method and characterised using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Nanofluids of SWCNT and zinc oxide (ZnO) were used in this oil recovery study. It was observed that curved antennae with magnetic feeders gave a 472% larger D-field signal than those without magnetic feeders. The Dmol3 simulations showed that the band gap of ZnO is 1.088 eV, and the band gap of the SWCNT was 0.326 eV. The particle sizes of the ZnO nanoparticles were in the range of 30-39 nm. FESEM and HRTEM images showed that the samples were highly crystalline, and the grain size increased as the temperature increased. As a result, these nanoparticles were suitable for the preparation of the nanofluid and oil recovery applications. Oil recovery using 0.001% (w/w) ZnO nanofluid and EM was 16.10 % of OOIP, and using 0.01% SWNT nanofluid yielded an oil recovery of 23 ROIP %. These results imply that injecting a ZnO oxide nanofluid of 0.001% w/w coupled with a curved antenna and magnetic feeders has the potential to improve oil recovery in waterflooding systems.

 

Direct link: http://www.scientific.net/JNanoR.26.101

 

15. Novel Enhanced Oil Recovery Method Using Co2+xFe2+1-xFe3+2O4 as Magnetic Nanoparticles Activated by Electromagnetic Waves

 

Authors: Hasan Soleimani, Noorhana Yahya, Noor Rasyada Ahmad Latiff, Hasnah Mohd Zaid, Birol Demiral, Jamshid Amighian

 

Abstract: Research on the application of nanoparticles, specifically magnetic nanoparticles in enhanced oil recovery has been increasing in recent years due to their potential to increase the oil production despite having to interact with reservoirs of high salinity, high pressure and temperature and un-natural pH. Unlike other conventional EOR agents e.g. surfactants and polymers, a harsh environment will cause degradation and failure to operate. Magnetic nanoparticles which are activated by a magnetic field are anticipated to have the ability to travel far into the oil reservoir and assist in the displacement of the trapped oil. In this work, ferromagnetic Co2+xFe2+1-xFe3+2O4 nanoparticles were synthesized and characterized for their morphological, structural and magnetic properties. At a composition x = 0.75, this nanomaterial shows its best magnetisation parameters i.e. highest value of saturation magnetization, remanence and coercivity of 65.23 emu/g, 12.18 emu/g and 239.10 Oe, respectively. Subsequently, a dispersion of 0.01 wt% Co2+0.75Fe2+0.25Fe3+2O4 nanoparticles in distilled water was used for core flooding test to validate its feasibility in enhanced oil recovery. In a core flooding test, the effect of electromagnetic waves irradiation to activate the magnetization of Co2+0.75Fe2+0.25Fe3+2O4 nanofluid was also investigated by irradiating a 78 MHz square wave to the porous medium while nanofluid injection was taking place. In conclusion, an almost 20% increment in the recovery of oil was obtained with the application of electromagnetic waves in 2 pore volumes injection of a Co2+0.75Fe2+0.25Fe3+2O4 nanofluid.

 

Direct link: http://www.scientific.net/JNanoR.26.111

Votes: 0
E-mail me when people leave their comments –

You need to be a member of The International NanoScience Community - Nanopaprika.eu to add comments!

Join The International NanoScience Community - Nanopaprika.eu