Nantech Journal Club: High Thermoelectric zT in n-Type Silver Selenide films at Room Temperature

High Thermoelectric zT in n-Type Silver Selenide films at Room Temperature

Jaime Andres Perez-Taborda, Olga Caballero-Calero, Liliana Vera-Londono, Fernando Briones, Marisol Martin-Gonzalez

In this work, a zT value as high as 1.2 at room temperature for n-type Ag2Se films is reported grown by pulsed hybrid reactive magnetron sputtering (PHRMS). PHRMS is a novel technique developed in the lab that allows to grow film of selenides with different compositions in a few minutes with great quality. The improved zT value reported for room temperature results from the combination of the high power factors, similar to the best values reported for bulk Ag2Se (2440 ± 192 µW m−1 K−2), along with a reduced thermoelectric conductivity as low as 0.64 ± 0.1 W m−1 K−1. The maximum power factor for these films is of 4655 ± 407 µW m−1 K−2 at 103 °C. This material shows promise to work for room temperature applications. Obtaining high zT or, in other words, high power factor and low thermal conductivity values close to room temperature for thin films is of high importance to develop a new generation of wearable devices based on thermoelectric heat recovery.

Views: 135


You need to be a member of The International NanoScience Community to add comments!

Join The International NanoScience Community

Welcome - about us

Welcome! Nanopaprika was cooked up by Hungarian chemistry PhD student in 2007. The main idea was to create something more personal than the other nano networks already on the Internet. Community is open to everyone from post-doctorial researchers and professors to students everywhere.

There is only one important assumption: you have to be interested in nano!

Nanopaprika is always looking for new partners, if you have any idea, contact me at

Dr. András Paszternák, founder of Nanopaprika

Partner network:

Next partner events of TINC

We are Media Partner of:



© 2019   Created by András Paszternák, PhD (founder).   Powered by

Badges  |  Report an Issue  |  Terms of Service