Nantech Journal Club: First-Principles study of MoS2, Phosphorene and Graphene based Single Electron Transistor for gas sensing applications

First-Principles study of MoS2, Phosphorene and Graphene based Single Electron Transistor for gas sensing applications

S. J. Ray

Technische Universität Darmstadt


Two dimensional single crystals like graphene, transition metal dichalcogenides, phosphorene, etc. can be useful for sensing applications due to their enhanced surface to volume ratio. A single electron transistor (SET) device made of such materials is proposed here as a futuristic low power device prototype for sensing purposes. The operation and performance of these SET devices are investigated for the first time using Density functional theory based Ab-initio calculations to understand their relative sensitivities towards sensing different gas molecules. The adsorption of CO, CO2, NH3 and NO2 on monolayers of graphene, MoS2 and phosphorene are investigated to find their most stable configurations and relative orientations on the host layers. The structural and electronic properties of the host layers have been found to be unaffected as a result of the adsorption processes. Phosphorene offers highest strength of physio- adsorption for all these molecules, indicating its superiority than the other two materials. It is observed that Phosphorene and MoS2 are additionally sensitive towards the N-based molecules and magnetism could be induced in the presence of a paramagnetic molecule. Present results indicate that the charge stability diagram of the SET is unique for a specific gas molecule on the Two-dimensional (2D) layer and this is sensitive up to the addition/removal of a single molecule from the island. The wide temperature range of operation, extreme detection sensitivity and the versatility of the 2D materials for gas sensing make these SET devices very powerful candidates for practical application.

Sensors and Actuators B: Chemical, 222, 492-498 (2016)

Views: 129


You need to be a member of The International NanoScience Community to add comments!

Join The International NanoScience Community

Welcome - about us

Welcome! Nanopaprika was cooked up by Hungarian chemistry PhD student in 2007. The main idea was to create something more personal than the other nano networks already on the Internet. Community is open to everyone from post-doctorial researchers and professors to students everywhere.

There is only one important assumption: you have to be interested in nano!

Nanopaprika is always looking for new partners, if you have any idea, contact me at

Dr. András Paszternák, founder of Nanopaprika

Partner network:

Next partner events of TINC

We are Media Partner of:



© 2019   Created by András Paszternák, PhD (founder).   Powered by

Badges  |  Report an Issue  |  Terms of Service