Researchers at the Ioffe Technical Physical Institutehave developed a new method of synthesising composite materials from synthetic opal and vanadium oxides. Such materials have unusual optical properties. Previously, they were generated by depositing vanadium oxides (V2O5 and VO2) from a solution, but in their latest work the researchers demonstrated the greater effectiveness of using melted vanadium oxide V2O5.

Synthetic opal presents a porous matrix consisting of silicon dioxide (SiO2). Two types of such matrixes exist — these are three-dimensional and film. Nanocomposites where opal pores are filled with vanadium oxides invoke significant interest. Such structures can be used as gas sensors, switches and limiters of visible and infrared light emission. In addition, nanocomposites have the properties of three-dimensional photon crystal. It means that their structure is characterised with periodic changes in the refractive index. Such substances are capable of capturing photons and are of great demand in optoelectronics.

Today, nanocomposite opal-V2O5 and opal-VO2 are produced using solution methods, that is, wash the matrix in the oxide solution until its pores are filled. The process must be repeated several times which increases the production time; it also leads to unwanted impurities in the resultant material.

Dmitry Kurdyukov and his colleagues suggested and tested a new method to synthesise such nanocomposites. The study report was published in the Solid-State Physicsmagazine. The researchers used melted vanadium oxide (V2O5) and an opal sample previously synthesised on the fused quartz substrate. The substances were put into the crucible at the temperature of 690°С, and were further heated uniformly. The vanadium oxide melt moistens the surface of silicon dioxide which allows it to fill the pores in the opal crystal completely. Cooling of the mixture results in the desired nanocomposite. The metal oxide shrinks with cooling and therefore the opal pores get only 70 per cent filled but this level of filling allows the material to preserve its properties. Based on the resulting opal-V2O5 it is possible to produce opal-VO2 – it requires a reaction of vanadium oxide reduction with hydrogen in the pores of the sample.

In order to confirm that the new methodology resulted in the synthesis of the desired nanocomposite, the researchers used the data provided by electron microscopy and Raman spectroscopy. The created substance was subjected to chemical etching to remove vanadium oxides from the near-surface opal layers. The scientists note that the nanocomposites generated after the synthesis have areas of lower pore filling levels, that concentrate near the surface. At the same time, the level of filling the pores located close to the substrate reaches 100 per cent. It means that the development of the three-dimensional photon-crystal structure begins during the first stage of the nanocomposite processing.

Source of information: D. А. Kurdyukov, S. А. Grudinkin, А. V. Nashchekin, N. Smirnov, Е. Yu. Trofimov, М. А. Yagovkina, А. B. Pevtsov, V. G. Golubev: “Melting Synthesis and Structural Properties of opal-V2O5 and opal-VO2 nanocomposites.” The Solid-State Physics, 2011, vol. 53, issue 2

Further information: Dmitry Kurdyukov, the Ioffe Technical Physical Institute, Russian Academy of Sceinces, (812)292-73-93 E-mail: Sergey Grudinkin, the Ioffe Technical Physical Institute, Russian Academy of Sceinces, (812)292-73-93 E-mail:

Views: 93

Tags: nano, nanocomposite, nanomaterial, nanostructure, nanotechnologies, nanotechnology


You need to be a member of The International NanoScience Community to add comments!

Join The International NanoScience Community

Latest Activity

Dr. Irshad A Wani is now a member of The International NanoScience Community
Profile IconThe International NanoScience Community via Facebook

Only 127 likes needed to 6000. Can you help us?

Facebookyesterday · Reply
Profile IconThe International NanoScience Community via Facebook

Kutatók a Neten -

Amíg a bloggerek, weblapszerkesztők jelentkeznek a…

See More
Facebookyesterday · Reply
Profile IconThe International NanoScience Community via Facebook

Funded PhD Scholarship in Nanostructural Characterisation of Thin Film Magnetic Materials - Leeds, United Kingdom

See More
FacebookFriday · Reply

Welcome - about us

Welcome! Nanopaprika was cooked up by Hungarian chemistry PhD student in 2007. The main idea was to create something more personal than the other nano networks already on the Internet. Community is open to everyone from post-doctorial researchers and professors to students everywhere.

There is only one important assumption: you have to be interested in nano!

Nanopaprika is always looking for new partners, if you have any idea, contact me at

Dr. András Paszternák, founder of Nanopaprika

Publications by A. Paszternák:

Smartphone-Based Extension of the Curcumin/Cellophane pH Sensing Method

Pd/Ni Synergestic Activity for Hydrogen Oxidation Reaction in Alkaline Conditions

The potential use of cellophane test strips for the quick determination of food colours

pH and CO2 Sensing by Curcumin-Coloured Cellophane Test Strip

Polymeric Honeycombs Decorated by Nickel Nanoparticles

Directed Deposition of Nickel Nanoparticles Using Self-Assembled Organic Template,

Organometallic deposition of ultrasmooth nanoscale Ni film,

Zigzag-shaped nickel nanowires via organometallic template-free route

Surface analytical characterization of passive iron surface modified by alkyl-phosphonic acid layers

Atomic Force Microscopy Studies of Alkyl-Phosphonate SAMs on Mica

Amorphous iron formation due to low energy heavy ion implantation in evaporated 57Fe thin films

Surface modification of passive iron by alkylphosphonic acid layers

Formation and structure of alkylphosphonic acid layers on passive iron

Structure of the nonionic surfactant triethoxy monooctylether C8E3 adsorbed at the free water surface, as seen from surface tension measurements and Monte Carlo simulations

Next partner events of TINC

We are Media Partner of: