Investigations on structural, optical and second harmonic generation in solvothermally synthesized pure and Cr-doped ZnO nanoparticles




At the forefront of the current scientific revolution of nanoscience nanocrystals (NCs), crystalline particles grown in liquid media, stand out over other classes of inorganic nanomaterials due to the high degree of control with which their crystal structure, size, shape, and surface functionalities can be engineered in the synthesis stage and to the versatility with which they can be processed and implemented into a large spectrum of devices and processes. Doped semiconductor nanostructures can yield both high luminescence efficiencies and lifetime shortening at the same time. In the present manuscript pure and Cr-doped ZnO nanoparticles were successfully synthesized from the solution phase chemistry and investigated with respect to their structural and optical properties. The resulting powder consisting of nanocrystalline particles were characterized by X-ray diffraction (XRD), UV-Visible spectroscopy, photoluminescence spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray analysis (EDX) techniques. A UV emission peak was observed from the exciton transition at 380 nm in the room temperature photo luminescent (PL) spectra. The blue emission band was assigned to the Zn interstitial and vacancy level transition. Even though Cr ions are known to act as an efficient non-radiative loss centre for near band gap emission (NBE), a pronounced NBE is obtained at room temperature even for a nominal Cr concentration of 8 at. %. XRD data analysis shows that the chromium dopant atoms are incorporated into the wurtzite host lattice. The grain size decreases with increasing dopant concentration. The lattice constants extracted by the Rietveld method from XRD data vary slightly with doping concentration.

By Pushpendra Kumar, Jai Singh, Vyom Parashar et al. Cryst. Eng. Comm., 2012, Advance Article, DOI. 10.1039/C1CE06127E                                       

Views: 102


You need to be a member of The International NanoScience Community to add comments!

Join The International NanoScience Community

Full member
Comment by Pushpendra Kumar on December 26, 2011 at 2:55pm

Thank you

Dr. Kareem


Thank you very much.



Full member
Comment by Abdul K. Parchur, Ph.D on December 26, 2011 at 10:08am

Dr.P. Kumar,

It’s good and your work is appreciated. Congrats!

With warm regards

 Kareem, BHU

Welcome - about us

Welcome! Nanopaprika was cooked up by Hungarian chemistry PhD student in 2007. The main idea was to create something more personal than the other nano networks already on the Internet. Community is open to everyone from post-doctorial researchers and professors to students everywhere.

There is only one important assumption: you have to be interested in nano!

Nanopaprika is always looking for new partners, if you have any idea, contact me at

Dr. András Paszternák, founder of Nanopaprika

Partner network:

Next partner events of TINC

We are Media Partner of:



© 2019   Created by András Paszternák, PhD (founder).   Powered by

Badges  |  Report an Issue  |  Terms of Service