Industry laser ensures effective synthesis of nanopowder

Researchers at the Institute of Electrophysics, Ural Branch, Russian Academy of Sciences in Yekaterinburg have suggested that the industrial ytterbium fiber laser should be used to get functional nanopowers. The work published in the Journal of Applied Physics compared productivity and power inputs when getting nanopowders via fiber and carbon dioxide laser. The work substantiated advantages of the first option. The effort has been accomplished with financial sponsorship of the Presidium of the Russian Academy of Sciences  and the Federal Targeted Program “Scientific and Educational Research Staff....

Nanopowders are applied in making structural ceramics, they are used in hydrogen power engineering, many of them are capable of luminescence. Target evaporation with the help of laser radiation is a promising method for obtaining nanopowders.

Utilization of carbon dioxide laser, which was also investigated in their previous efforts by the Yekaterinburg researchers, enables to get particles about 20 nm in dimension. Differences in size, which inevitably occur when getting nanoparticles, are insignificant in case of carbon dioxide laser. However, engineering deficiencies of such laser – capacity instability, low efficiency of conversion of electrical energy into emission, impressive dimensions – are connected with considerable inconveniences, and encourage researchers to seek for new solutions.

A group of researchers guided by Yuri Kotov  has suggested that ytterbium fiber lasers should be used in a similar process flow. The experiment involved lasers, produced by the Scientific and Technical Association “IRE-Polus”. They are more efficient than carbon dioxide lasers, however, their wavelength makes 1.07 micrometers (10 times less than that of carbon dioxide laser), and possibility of their utilization to get nanopowders required experimental check.

The target – a material blank for getting substances of required composition - consisted of compressed micron-sized powders of yttrium (Y) and zinc (Zn) oxides. Laser radiation was transmitted via fiber cable to the optical system and was focused on the target. The material blank was equipped by a drive that ensured the target horizontal displacement and rotation for uniform surface processing. The molecules vaporized from the surface were taken away by the inert gas stream and they condensed upon a specially prepared substrate layer.

Under uninterrupted seventeen-hour laser work, the powder output was 390 g – it is approximately three times higher than when using carbon dioxide laser. Additional analysis has confirmed obtaining of practically homogeneous nanopowder, which is close in composition to the target. A set of experiments on getting optical ceramics nanopowders has also proved that ytterbium laser utilization ensures that the final composition of the mixture as compared to the initial composition of the target is distorted to a much less extent than in case of carbon dioxide laser utilization. The researchers primarily connect the above effect with high monochromaticity of the ytterbium laser.

Special attention was paid by the specialists to the search of optimum condition for laser operation. The obtained experimental dependence of productivity on pulse duration upon fixed pulse energy has a typical peak in the range of 100 microseconds. Thus, in the researchers’ opinion, already now “ytterbium fiber lasers should be considered more promising for getting nanopowders, taking into account their higher consumer properties.”

Petrov Mikhail

Views: 45

Tags: laser, method, nanopowder, nanostructure, nanotechnology, synthes


You need to be a member of The International NanoScience Community to add comments!

Join The International NanoScience Community

Latest Activity

Welcome - about us

Welcome! Nanopaprika was cooked up by Hungarian chemistry PhD student in 2007. The main idea was to create something more personal than the other nano networks already on the Internet. Community is open to everyone from post-doctorial researchers and professors to students everywhere.

There is only one important assumption: you have to be interested in nano!

Nanopaprika is always looking for new partners, if you have any idea, contact me at

Dr. András Paszternák, founder of Nanopaprika

Publications by A. Paszternák:

Smartphone-Based Extension of the Curcumin/Cellophane pH Sensing Method

Pd/Ni Synergestic Activity for Hydrogen Oxidation Reaction in Alkaline Conditions

The potential use of cellophane test strips for the quick determination of food colours

pH and CO2 Sensing by Curcumin-Coloured Cellophane Test Strip

Polymeric Honeycombs Decorated by Nickel Nanoparticles

Directed Deposition of Nickel Nanoparticles Using Self-Assembled Organic Template,

Organometallic deposition of ultrasmooth nanoscale Ni film,

Zigzag-shaped nickel nanowires via organometallic template-free route

Surface analytical characterization of passive iron surface modified by alkyl-phosphonic acid layers

Atomic Force Microscopy Studies of Alkyl-Phosphonate SAMs on Mica

Amorphous iron formation due to low energy heavy ion implantation in evaporated 57Fe thin films

Surface modification of passive iron by alkylphosphonic acid layers

Formation and structure of alkylphosphonic acid layers on passive iron

Structure of the nonionic surfactant triethoxy monooctylether C8E3 adsorbed at the free water surface, as seen from surface tension measurements and Monte Carlo simulations

Next partner events of TINC

We are Media Partner of: