A Comparison of Multiwall Carbon Nanotubes and Stacked-Cup Carbon Nanotubes

A Comparison of Multiwall Carbon Nanotubes and Stacked-Cup Carbon Nanotubes


While carbon nanotubes (CNT) and carbon nanofibers (CNF) are both hollow, nanometerals in scale, and produced in a similar manner, there are distinct differences which significantly impact their performance and ability to be processed.  The primary differences between the materials are morphology, size, ease of processing, and price. 



Carbon nanofibers, also known as Stacked-Cup Carbon Nanotubes, have a unique morphology in that graphene planes are canted from the fiber axis, resulting in exposed edge planes on the interior and exterior surfaces of the fiber.  CNTs, on the other hand, typically resemble an assembly of concentric cylinders of graphene.  To illustrate the difference in morphology, Figure 1 below shows a side by side comparison of A) Multi-walled carbon nanotubes and B) stacked cup carbon nanotubes.


Carbon nanotubes typically feature fiber diameters between 1-30 nanometers.  Carbon nanofibers, or CSCNTs, feature fiber diameters ranging from 50-200 nanometers depending upon the carbon nanofiber type.  Both nanomaterials are available in varying lengths, up to several hundred micrometers, depending on the feedstock and production method.  While the difference in diameter ranges between the nanomaterials appear to be modest, the real-world implications for using these materials are significant. 



In the case of carbon nanotubes, Van der Waals forces cause the nanotubes to form ropes or reassemble after being dispersed.  Due to their smaller size, Van der Waals forces are stronger in carbon nanotubes, requiring the use of chemical dispersants or functionalization techniques to aid and maintain dispersion.  Unlike carbon nanotubes, stacked-cup carbon nanotubes are less affected by Van der Waals forces and tend to stay dispersed for longer periods of time. This difference enables the stacked-cup carbon nanotubes to be dispersed through purely mechanical processing techniques without the need for additional, and costly, processing steps, making CNFs easier and cheaper to process.  

Because CNFs feature exposed graphene edge planes on its surfaces, the surface state can be readily modified through chemical functionalization or thermal treatments, when necessary, to facilitate chemical bonding  with any matrix.  Both functionalizing and dispersing the CNFs are performed using traditional, readily scalable, processing methods and these steps can be performed quickly.  On the other hand, CNT functionalization is performed by first creating defect sites along the side walls of the fibers, which can then be utilized for attaching functional groups.  This requires several processing steps, and can be difficult and costly to scale-up.



Finally, the price of CNTs and CNFs vary depending on the producer but in general, the cost of using the CNFs is typically an order-of-magnitude lower than for CNTs.  CNFs are available in large volumes (up to 70,000 pounds per year) and range in price from as low as $100 per pound to as much as $500 per pound.  The price of CNTs also vary widely, and are very dependent on the quality and purity of the CNT, but can be found for as low as $100 per pound to as much as $750 per gram  or more!  Remember, this is the cost for just the raw material, which then need to be processed into a composite.  In the case of CNTs, additional processing steps, such as purification, functionalization, and the addition of chemical dispersant are often required prior to dispersion; these additional steps significantly increase the cost and complexity of using nanotubes.  Considering the final composite properties are many times equivalent or better for CNF-reinforced composites when compared to CNT-reinforced composites, carbon nanofibers often have a lower overall impact on the final cost of producing the nanocomposite.


Pyrograf Products, Inc. is one of the leading producers of stacked-cup carbon nanotubes worldwide. PPI focuses on manufacturing high- quality, low-cost stacked-cup carbon nanotubes utilizing the proprietary and patented vapor grown process.

For more information visit www.pyrografproducts.com.

Views: 117

Tags: Pyrograf, carbon, nanofiber, nanotubes, stacked-cup


You need to be a member of The International NanoScience Community to add comments!

Join The International NanoScience Community

Full member
Comment by Eishita Koley on May 27, 2011 at 7:20am

Yes! Your are absolutely right.

Multiwalled carbon nanotubes is also available at http://www.reinste.com/

Welcome - about us

Welcome! Nanopaprika was cooked up by Hungarian chemistry PhD student in 2007. The main idea was to create something more personal than the other nano networks already on the Internet. Community is open to everyone from post-doctorial researchers and professors to students everywhere.

There is only one important assumption: you have to be interested in nano!

Nanopaprika is always looking for new partners, if you have any idea, contact me at editor@nanopaprika.eu

Dr. András Paszternák, founder of Nanopaprika

Next partner events of TINC

We are Media Partner of:

© 2015   Created by András Paszternák, PhD (founder).   Powered by

Badges  |  Report an Issue  |  Terms of Service