$20M for nanotech center to boost advanced manufacturing

Mark Tuominen and James Watkins

 

The National Science Foundation has awarded a five-year, $20 million grant to support a national research center on nanomanufacturing on campus through a second round of funding for the Center for Hierarchical Manufacturing (CHM). 

A signature CHM effort is focused on roll-to-roll nanoscale processing of flexible electronics and high technology devices such as solar cells, cell phone displays, batteries and sensors. Roll-to-roll processing is similar to how photographic film moves through a camera from one spindle to another or how newspapers are printed, but with chemical and physical processing in between.

The center works closely with private industry seeking to boost their business and the Massachusetts economy by tapping into the advanced technology generated and refined by the center. When the center was created in 2006, it received a $16 million federal grant and $7 million in state matching funds.

Chancellor Robert C. Holub, Eric T. Nakajima of the state's executive Office of Housing and Economic Development, and industry executives James M. Casey from FLEXcon of Spencer and Michael D. McCreary of E Ink of Cambridge, attended today's grant announcement at the Conte Polymer Research Center. Through the grant the center will concentrate its efforts on its new Roll-to-Roll (R2R) Process Facility for Nanomanufacturing. Working with Carpe Diem Technologies of Franklin. CHM scientists have developed a custom manufacturing laboratory to scale up and integrate nanoimprint patterning and coating of self-assembling materials onto a high-speed web. 

The CHM specializes in the science and engineering of creating nanometer-scale structures--thousands of times smaller than the width of a human hair--as building blocks for manufacturing device components and systems. Initial work at the center has concentrated on how nanoscale structures can be engineered from polymers for applications in precision microelectronics, focusing primarily on silicon-wafer based computer chip technology. With the new grant, the CHM will turn its attention to a large-volume, low-cost, roll-to-roll manufacturing processes currently used in the advanced printing, coating and flexible electronics industries. 

CHM director James Watkins, a faculty member in polymer science and engineering, said, "Massachusetts has a rich history in papermaking, printing and coating technologies. We'd like to design tools and processes that are as close as possible to the roll-to-roll platforms that area companies are familiar with. This approach has the potential for terrific synergy with local industry and the possibility of creating advanced manufacturing jobs that are anchored in the region."

Michael F. Malone, Vice Chancellor For Research And Engagement, said having an impact on advanced manufacturing is aligned with the campus' desire to promote innovation and applied research in collaboration with industry. "The new experimental facility we are announcing with the award of this grant will enable companies to explore these emerging nanomanufacturing methods with us and to be part of the innovation process within the growing field of printed electronics." 

Watkins is convinced that cost-effective manufacturing of nanotechnology-enabled products and materials is critical for American manufacturing competitiveness in sectors such as energy generation and storage, chemical separations, flexible displays and electronics, and sensors. "Nanotechnology can lead to significant performance enhancements in each of these areas, but keeping costs down is a number one concern for many kinds of products," he said. "By designing new ways to mass-produce high-technology devices cheaply and quickly, we hope to allow innovations that can benefit society to move more rapidly from the laboratory into real products. That's really the value this center provides." Because the objective of roll-to-roll is to get around expensive top-down processing techniques commonly employed in the semiconductor industry, the CHM focuses on the design of devices that make sense for these assembly techniques. Mark Tuominen, a physics faculty member who co-directs the CHM, notes that the process can create structures that actually exhibit new behavior. "Our devices are often designed to exploit the unique character of the materials produced," he said.

The campus's top-rated polymer science and engineering program leads the CHM's multi-disciplinary approach to nanotechnology and advanced manufacturing. Other partners on the grant include the Massachusetts Institute of Technology (MIT), the National Institute of Standards and Technology (NIST), Rice University, University of Michigan, University of Puerto Rico Rio Piedras, University of Indiana and Mount Holyoke College. The CHM is designated by the NSF as one of the elite Nanoscale Science and Engineering Centers in the U.S. With a roll-to-roll based manufacturing system capable of generating literally billions of individual electronic devices every minute, accuracy and quality are of prime importance. The role of NIST and MIT in the center involves the development of measurement techniques to control manufacturing processes at the nanoscale.

The core technology of the center is based on chemical methods for synthesizing ordered hybrid materials, nanoscale templates and patterns, primarily out of polymers. The polymers are designed to "self-assemble," spontaneously organizing into specified nanoscale structures upon simple coating from solution. Processes like this, which scientists at UMass Amherst including Professor Tom Russell have pioneered since the 1990s, result in "massively parallel" arrays of precisely designed nanostructures. These approaches are now being extended to multi-component, functional hybrid materials and will be combined with nanoimprint lithography (NIL) to build devices on flexible substrates. NIL technology provides a means of printing or embossing nanoscale features on a moving web that can serve as part of the device or be used in a process to pattern the device. 

Above: Center for Hierarchical Manufacturing co-directors Mark Tuominen and James Watkins

 

More Information

Center for Hierarchical Manufacturing

 

Views: 63

Comment

You need to be a member of The International NanoScience Community to add comments!

Join The International NanoScience Community


Full member
Comment by abbas matrood bashi on September 24, 2011 at 9:13am
very good idea researches which are based on chemical methods for synthesizing ordered hybrid materials, nanoscale templates and patterns. this is my interesting.

Latest Activity

Profile IconThe International NanoScience Community via Facebook
Thumbnail

Research Assistant (Ph.D. student) - Nanopatterning, Nanoanalysis, Photonic Materials group of the Physics Department, University of Paderborn, Germany…

See More
Facebook4 hours ago · Reply

Full member
TINC posted blog posts
4 hours ago
Zoltan Zimboras is now a member of The International NanoScience Community
17 hours ago
Profile IconThe International NanoScience Community via Facebook
Thumbnail

Senior Laboratory Research Scientist Electron Microscopist - The Francis Crick Institute, London http://www.nanopaprika.eu/profiles/blogs/senior-laboratory-research-scientist-electron-microscopist-the-fr?xg_source=activity

See More
Facebookyesterday · Reply

Welcome - about us

Welcome! Nanopaprika was cooked up by Hungarian chemistry PhD student in 2007. The main idea was to create something more personal than the other nano networks already on the Internet. Community is open to everyone from post-doctorial researchers and professors to students everywhere.

There is only one important assumption: you have to be interested in nano!

Nanopaprika is always looking for new partners, if you have any idea, contact me at editor@nanopaprika.eu

Dr. András Paszternák, founder of Nanopaprika

Publications by A. Paszternák:

Smartphone-Based Extension of the Curcumin/Cellophane pH Sensing Method

Pd/Ni Synergestic Activity for Hydrogen Oxidation Reaction in Alkaline Conditions

The potential use of cellophane test strips for the quick determination of food colours

pH and CO2 Sensing by Curcumin-Coloured Cellophane Test Strip

Polymeric Honeycombs Decorated by Nickel Nanoparticles

Directed Deposition of Nickel Nanoparticles Using Self-Assembled Organic Template,

Organometallic deposition of ultrasmooth nanoscale Ni film,

Zigzag-shaped nickel nanowires via organometallic template-free route

Surface analytical characterization of passive iron surface modified by alkyl-phosphonic acid layers

Atomic Force Microscopy Studies of Alkyl-Phosphonate SAMs on Mica

Amorphous iron formation due to low energy heavy ion implantation in evaporated 57Fe thin films

Surface modification of passive iron by alkylphosphonic acid layers

Formation and structure of alkylphosphonic acid layers on passive iron

Structure of the nonionic surfactant triethoxy monooctylether C8E3 adsorbed at the free water surface, as seen from surface tension measurements and Monte Carlo simulations

Next partner events of TINC

We are Media Partner of: