Message from Dr. Elena Lacatus, member of The International NanoScience Community since 2007:

Traditional approaches to modeling focus on one scale. By considering simultaneously models at different scales, an approach that shares the efficiency of the macroscopic models as well as the accuracy of the microscopic models was important. There has been considerable efforts in trying to understand the relations between microscopic and macroscopic models. There have also been several classical success stories of combining physical models at different levels of detail to efficiently and accurately model complex processes of interest. The multiscale, multi-physics viewpoint opens up unprecedented opportunities for modeling. It opens up the opportunity to put engineering models on a solid footing. It allows us to connect engineering applications with basic science. It offers a more unified view to modeling, by focusing more on the different levels of physical laws and the relations between them, with the specific applications as examples. On the other hand, damage assessment and residual useful life estimation are essential for aerospace, civil and naval structures. Multiscale modeling is a key element in material life estimation and structure health monitoring. It not only provides important information on the physics of failure, such as damage initiation and growth, the output can be used as “virtual sensing” data for detection and prognosis.

Aims and Scope:
. Advanced modeling in multiple scales
. Material characterization
. Damage evaluation and detection
. Fatigue, fracture and damage estimation
. Material representation in multiple length scales
. Comparison between simulation and experiment
. Structure health monitoring

More information here

Votes: 0
E-mail me when people leave their comments –

You need to be a member of The International NanoScience Community - Nanopaprika.eu to add comments!

Join The International NanoScience Community - Nanopaprika.eu