SouthWest NanoTechnologies Announces Semiconductor-Enriched Carbon Nanotubes for Printed Electronics Applications

NORMAN, OK May 31, 2012 -- SouthWest NanoTechnologies (SWeNT®) has developed a new Single-Wall Carbon Nanotube (SWCNT) product with an exceptionally high concentration of semiconducting SWCNT species.

 

Developed for use in printed semiconductor devices, SG65i is the successor to SWeNT's grade SG65, widely recognized for its quality and consistency, and chosen by NIST as the basis for its standard reference material for SWCNT. Both SG65 and SG65i are produced using the patented CoMoCAT® process, widely recognized for its unique ability to control SWCNT chirality.

 

Single-wall carbon nanotubes can be metallic or semiconducting, depending on diameter and chirality, a term which relates to the specific structure of the nanotube. SG65i has semiconducting SWCNT typical concentration of >95%, as synthesized - that is before expensive or time-consuming secondary operations to reduce metallic SWCNT content. Most other SWCNT have approximately 67% semiconducting species as synthesized.

 

For semiconductors, any significant amount of metallic SWCNT content negates the inherent properties of semiconducting SWCNT. Secondary processes to reduce the metallic SWCNT content are low-yield, slow and expensive, and can damage the remaining SWCNT. The new product will dramatically improve the yield of semiconducting SWCNT, reduce process cost and time, and improve device performance.

 

"Much outstanding research has been conducted on the use of SWCNT as semiconductor material, with great promise for a range of applications from low cost, printed TFTs for OLED displays to, in time, the alternative to silicon in high performance computing," says SWeNT CEO Dave Arthur. "But commercial success has been inhibited by the extraordinary costs of isolating the semiconducting content of typical SWCNT materials. SG65i will enable a new generation of applications based on lower costs and higher performance. Furthermore, we continue to improve our processes to synthesize even more semiconductor-enriched products, with the goal of eliminating secondary processes altogether."

 

SG65i is available either as dry powder, aqueous or solvent based dispersions, or as printable ink.

 

About SWeNT:

 

SouthWest NanoTechnologies (SWeNT) is a privately-held advanced materials company that manufactures high-quality Single-Wall and Specialty Multi-Wall carbon nanotube products in a variety of forms, including powders, pastes, dispersions and inks for a wide range of applications in the electronics and composites industries. SWeNT was founded in 2001 and has established commercial-scale manufacturing operations in Norman, OK as well as a business and applications development center in the Boston, MA area.

 

For more information, please visit www.swentnano.com or contact us at info@swentnano.com

 

Views: 12

Tags: nanocompany

Comment

You need to be a member of The International NanoScience Community to add comments!

Join The International NanoScience Community

Next partner events of TINC

We are Media Partner of:

Welcome - about us

Welcome! Nanopaprika was cooked up by Hungarian chemistry PhD student in 2007. The main idea was to create something more personal than the other nano networks already on the Internet. Community is open to everyone from post-doctorial researchers and professors to students everywhere.

There is only one important assumption: you have to be interested in nano!

Nanopaprika is always looking for new partners, if you have any idea, contact me at editor@nanopaprika.eu

Dr. András Paszternák, founder of Nanopaprika

Publications by A. Paszternák:

The potential use of cellophane test strips for the quick determination of food colours

pH and CO2 Sensing by Curcumin-Coloured Cellophane Test Strip

Polymeric Honeycombs Decorated by Nickel Nanoparticles

Directed Deposition of Nickel Nanoparticles Using Self-Assembled Organic Template,

Organometallic deposition of ultrasmooth nanoscale Ni film,

Zigzag-shaped nickel nanowires via organometallic template-free route

Surface analytical characterization of passive iron surface modified by alkyl-phosphonic acid layers

Atomic Force Microscopy Studies of Alkyl-Phosphonate SAMs on Mica

Amorphous iron formation due to low energy heavy ion implantation in evaporated 57Fe thin films

Surface modification of passive iron by alkylphosphonic acid layers

Formation and structure of alkylphosphonic acid layers on passive iron

Structure of the nonionic surfactant triethoxy monooctylether C8E3 adsorbed at the free water surface, as seen from surface tension measurements and Monte Carlo simulations

Photos

  • Add Photos
  • View All