Shared by Vyom Parashar

3439931573?profile=original

Title of the paper:  Switching Behaviors of Graphene-Boron Nitride Nanotube Heterojunctions
University/Institute:
1. Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, USA
2. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6487, USA
3. Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185.
Abstracts:High electron mobility of graphene has enabled their application in high-frequency analogue devices but their gapless nature has hindered their use in digital switches. In contrast, the structural analogous, h-BN sheets and BN nanotubes (BNNTs) are wide band gap insulators. Here we show that the growth of electrically insulating BNNTs on graphene can enable the use of graphene as effective digital switches. These graphene-BNNT heterojunctions were characterized at room temperature by four-probe scanning tunneling microscopy (4-probe STM) under real-time monitoring of scanning electron microscopy (SEM). A switching ratio as high as 105 at a turn-on voltage as low as 0.5 V were recorded. Simulation by density functional theory (DFT) suggests that mismatch of the density of states (DOS) is responsible for these novel switching behaviors.
Journal, Issue, Page Nr.: Scientific Reports Article number: 12238 (2015) doi:10.1038/srep12238
Link to the paper (link to the journal webpage): http://www.nature.com/articles/srep12238
Votes: 0
E-mail me when people leave their comments –

You need to be a member of The International NanoScience Community - Nanopaprika.eu to add comments!

Join The International NanoScience Community - Nanopaprika.eu