Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens

Background

Biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, time-effective and environmentally friendly technologies for nano-materials synthesis. This paper reports the one pot green synthesis of silver nanoparticles (AgNPs) using the leaf bud extract of a mangrove plant, Rhizophora mucronata and their antimicrobial effects against aquatic pathogens. Highly stable AgNPs were synthesized by treating the mangrove leaf bud extract with aqueous silver nitrate solution at 15 psi pressure and 121degreesC for 5 minutes.

Results

The biosynthesized AgNPs were characterized by UV-visible spectrum, at 426 nm. The XRay Diffraction (XRD) pattern revealed the face-centered cubic geometry of AgNPs. Fourier Transform Infra Red (FTIR) spectroscopic analysis was carried out to identify the possible biomolecules responsible for biosynthesis of AgNPs from the leaf bud extract. The size and shape of the well-dispersed AgNPs were documented with the help of High Resolution Transmission Electron Microscopy (HRTEM) with a diameter ranged from 4 to 26 nm. However a maximum number of particles were observed at 4 nm in size. The antibacterial effects of AgNPs were studied against aquatic pathogens Proteus spp., Pseudomonas fluorescens and Flavobacterium spp., isolated from infected marine ornamental fish, Dascyllus trimaculatus.

Conclusion

This study reveals that the biosynthesized AgNPs using the leaf bud extract of a mangrove plant (R. mucronata) were found equally potent to synthetic antibiotics. The size of the inhibition zone increases when the concentration of the AgNPs increased and varies according to species.

For further information and full paper please visit

http://www.aquaticbiosystems.org/content/8/1/11/abstract

Views: 46

Tags: Antimicrobial, aquatic, control, nano, pathogens, silver, to

Comment

You need to be a member of The International NanoScience Community to add comments!

Join The International NanoScience Community

Next partner events of TINC

We are Media Partner of:

Welcome - about us

Welcome! Nanopaprika was cooked up by Hungarian chemistry PhD student in 2007. The main idea was to create something more personal than the other nano networks already on the Internet. Community is open to everyone from post-doctorial researchers and professors to students everywhere.

There is only one important assumption: you have to be interested in nano!

Nanopaprika is always looking for new partners, if you have any idea, contact me at editor@nanopaprika.eu

Dr. András Paszternák, founder of Nanopaprika

Publications by A. Paszternák:

The potential use of cellophane test strips for the quick determination of food colours

pH and CO2 Sensing by Curcumin-Coloured Cellophane Test Strip

Polymeric Honeycombs Decorated by Nickel Nanoparticles

Directed Deposition of Nickel Nanoparticles Using Self-Assembled Organic Template,

Organometallic deposition of ultrasmooth nanoscale Ni film,

Zigzag-shaped nickel nanowires via organometallic template-free route

Surface analytical characterization of passive iron surface modified by alkyl-phosphonic acid layers

Atomic Force Microscopy Studies of Alkyl-Phosphonate SAMs on Mica

Amorphous iron formation due to low energy heavy ion implantation in evaporated 57Fe thin films

Surface modification of passive iron by alkylphosphonic acid layers

Formation and structure of alkylphosphonic acid layers on passive iron

Structure of the nonionic surfactant triethoxy monooctylether C8E3 adsorbed at the free water surface, as seen from surface tension measurements and Monte Carlo simulations