3D nanostructured composite makes good battery anode

A new ternary electrode made from nanostructured silicon nanoparticles, conducting polymer hydrogel and carbon nanotubes developed by researchers at the University of Texas at Austin in the US might be ideal as an ultrahigh performance lithium-ion battery anode material. The electrode, which can be made using scalable solution-phase synthesis and industrially compatible slurry coating techniques, has outstanding performance – with a reversible discharge capacity of more than 1600 mAh/g over 1000 cycles at a current rate of 3.3 A/g. Si/PPy/CNT anode The nanostructured silicon nanoparticles/conducting polymer hydrogel/carbon nanotube (Si/PPy/CNT) electrode was prepared using an all-solution phase synthesis technique. The researchers, led by Guihua Yu, mixed an aqueous solution comprising a conductive polymer monomer and the cross-linker phytic acid with a second solution containing an initiator molecule, ammonium persulphate. Commercially available silicon nanoparticles and carbon nanotubes were then added to the mix. The initiator kick starts the polymerization reaction, forming a coating on the silicon surface and a 3D hydrogel network. After 10 minutes reaction time, the final slurry was ready to be coated onto a copper current collector for making anodes. Silicon is an excellent and cheap material for use in lithium-ion battery anodes because it has a theoretical capacity of 4200 mAh/g –

The post 3D nanostructured composite makes good battery anode has been published on Technology Org.

Votes: 0
E-mail me when people leave their comments –

You need to be a member of The International NanoScience Community - Nanopaprika.eu to add comments!

Join The International NanoScience Community - Nanopaprika.eu