New group on NanoScience: Polymer Nanocomposite Group (PNC)

The Group created by Rumiana Kotsilkova

Webpage of the new group: http://nanoscience.ning.com/group/polymernanocompositegrouppnc

About the group creator:

Doctor of Sciences. Professor of Materials Science in the Central Laboratory of Physico-Chemical Mechanics of the Bulgarian Academy of Sciences. Leader of the Thematic Group “Clusters, Nanoparticles, Composites” and member of the Expert Council of the National Centre on Nanotechnology.
Thermoset Nanocomposites for Engineering Applications
Smithers Rapra, 2007
Edited by Rumiana Kotsilkova

http://www.rapra.net/products_and_services/Books/Materials/Thermosets/Thermoset_Nanocomposites_for_Engineering_Applications_SB.asp?

Thermoset nanocomposites are complex hybrid materials which integrate nanoparticles with polymers to produce a novel nanostructure, with extraordinary properties. Organic/inorganic hybrids are some of the most challenging nanostructures investigated to date. What differentiates nanocomposite materials from classical composites is the degree of control of fabrication, processing and performance, that can be achieved down to a very small scale.
Thermoset polymer nanocomposites have received less interest in their scientific development and engineering applications than thermoplastic nanocomposites. However, some of these materials may be relatively easy to bring into production. The understanding of characteristics of the interphase region and the estimation of technology-structure-property relationships are the current research frontier in nanocomposite materials.

This book summarises the experimental results of work on thermoset nanocomposites obtained from the collaboration of three research groups from Bulgaria, Greece and Italy, and analyses some of results reported in the literature. The engineering resin nanocomposites are restricted to the most commonly used thermosets, such as epoxy resins, unsaturated polyesters, acrylic resins, and so on. Various nanoparticles have been found to be useful for nanocomposite preparation with thermosetting polymers, along with smectite clay, diamond, graphite, alumina and ferroxides.

Thermoset nanocomposites represent a new technology solution. These new formulations benefit from improved dimensional/thermal stability, flame retardancy and chemical resistance; and have potential applications in marine, industrial and construction markets.

This book helps to answer questions related to the design of nanocomposites by controlling the processing technology and structure. The book is addressed not only to researchers and engineers who actively work in the broad field of nanocomposite technology, but also to newcomers and students who have just started investigations in this multidisciplinary field of material science. Delete Comment

Views: 4

Comment

You need to be a member of The International NanoScience Community to add comments!

Join The International NanoScience Community

Next partner events of TINC

We are Media Partner of:

Welcome - about us

Welcome! Nanopaprika was cooked up by Hungarian chemistry PhD student in 2007. The main idea was to create something more personal than the other nano networks already on the Internet. Community is open to everyone from post-doctorial researchers and professors to students everywhere.

There is only one important assumption: you have to be interested in nano!

Nanopaprika is always looking for new partners, if you have any idea, contact me at editor@nanopaprika.eu

Dr. András Paszternák, founder of Nanopaprika

Publications by A. Paszternák:

The potential use of cellophane test strips for the quick determination of food colours

pH and CO2 Sensing by Curcumin-Coloured Cellophane Test Strip

Polymeric Honeycombs Decorated by Nickel Nanoparticles

Directed Deposition of Nickel Nanoparticles Using Self-Assembled Organic Template,

Organometallic deposition of ultrasmooth nanoscale Ni film,

Zigzag-shaped nickel nanowires via organometallic template-free route

Surface analytical characterization of passive iron surface modified by alkyl-phosphonic acid layers

Atomic Force Microscopy Studies of Alkyl-Phosphonate SAMs on Mica

Amorphous iron formation due to low energy heavy ion implantation in evaporated 57Fe thin films

Surface modification of passive iron by alkylphosphonic acid layers

Formation and structure of alkylphosphonic acid layers on passive iron

Structure of the nonionic surfactant triethoxy monooctylether C8E3 adsorbed at the free water surface, as seen from surface tension measurements and Monte Carlo simulations