Investigations on structural, optical and second harmonic generation in solvothermally synthesized pure and Cr-doped ZnO nanoparticles




At the forefront of the current scientific revolution of nanoscience nanocrystals (NCs), crystalline particles grown in liquid media, stand out over other classes of inorganic nanomaterials due to the high degree of control with which their crystal structure, size, shape, and surface functionalities can be engineered in the synthesis stage and to the versatility with which they can be processed and implemented into a large spectrum of devices and processes. Doped semiconductor nanostructures can yield both high luminescence efficiencies and lifetime shortening at the same time. In the present manuscript pure and Cr-doped ZnO nanoparticles were successfully synthesized from the solution phase chemistry and investigated with respect to their structural and optical properties. The resulting powder consisting of nanocrystalline particles were characterized by X-ray diffraction (XRD), UV-Visible spectroscopy, photoluminescence spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray analysis (EDX) techniques. A UV emission peak was observed from the exciton transition at 380 nm in the room temperature photo luminescent (PL) spectra. The blue emission band was assigned to the Zn interstitial and vacancy level transition. Even though Cr ions are known to act as an efficient non-radiative loss centre for near band gap emission (NBE), a pronounced NBE is obtained at room temperature even for a nominal Cr concentration of 8 at. %. XRD data analysis shows that the chromium dopant atoms are incorporated into the wurtzite host lattice. The grain size decreases with increasing dopant concentration. The lattice constants extracted by the Rietveld method from XRD data vary slightly with doping concentration.

By Pushpendra Kumar, Jai Singh, Vyom Parashar et al. Cryst. Eng. Comm., 2012, Advance Article, DOI. 10.1039/C1CE06127E                                       

Views: 68


You need to be a member of The International NanoScience Community to add comments!

Join The International NanoScience Community

Full member
Comment by Pushpendra Kumar on December 26, 2011 at 2:55pm

Thank you

Dr. Kareem


Thank you very much.



Full member
Comment by Abdul K. Parchur, Ph.D on December 26, 2011 at 10:08am

Dr.P. Kumar,

It’s good and your work is appreciated. Congrats!

With warm regards

 Kareem, BHU

Latest Activity

Profile IconThe International NanoScience Community via Facebook
Facebook10 hours ago · Reply

Full member
TINC posted a blog post
11 hours ago
Profile IconThe International NanoScience Community via Facebook

Kutatók a Neten -

"Második bejegyzésem szóljon a…

See More
Facebookyesterday · Reply
GEO SUNNY is now a member of The International NanoScience Community

Welcome - about us

Welcome! Nanopaprika was cooked up by Hungarian chemistry PhD student in 2007. The main idea was to create something more personal than the other nano networks already on the Internet. Community is open to everyone from post-doctorial researchers and professors to students everywhere.

There is only one important assumption: you have to be interested in nano!

Nanopaprika is always looking for new partners, if you have any idea, contact me at

Dr. András Paszternák, founder of Nanopaprika

Publications by A. Paszternák:

Smartphone-Based Extension of the Curcumin/Cellophane pH Sensing Method

Pd/Ni Synergestic Activity for Hydrogen Oxidation Reaction in Alkaline Conditions

The potential use of cellophane test strips for the quick determination of food colours

pH and CO2 Sensing by Curcumin-Coloured Cellophane Test Strip

Polymeric Honeycombs Decorated by Nickel Nanoparticles

Directed Deposition of Nickel Nanoparticles Using Self-Assembled Organic Template,

Organometallic deposition of ultrasmooth nanoscale Ni film,

Zigzag-shaped nickel nanowires via organometallic template-free route

Surface analytical characterization of passive iron surface modified by alkyl-phosphonic acid layers

Atomic Force Microscopy Studies of Alkyl-Phosphonate SAMs on Mica

Amorphous iron formation due to low energy heavy ion implantation in evaporated 57Fe thin films

Surface modification of passive iron by alkylphosphonic acid layers

Formation and structure of alkylphosphonic acid layers on passive iron

Structure of the nonionic surfactant triethoxy monooctylether C8E3 adsorbed at the free water surface, as seen from surface tension measurements and Monte Carlo simulations

Next partner events of TINC

We are Media Partner of: